Teksvideo. Hai komplain pada soal ini kita akan menggambar grafik fungsi kuadrat di bawah ini perlu kalian ketahui bentuk umum dari fungsi kuadrat yaitu FX = AX + BX + C dimana disini untuk FX = y kemudian Jika nilai a lebih besar dari nol maka grafik terbuka ke atas jika nilai a kurang dari 0 maka grafik terbuka ke bawah kita lihat disini Y = X kuadrat dikurangi 9 maka
Langkah2menggambar grafik y = ax 2 + bx +c adalah sebagai berikut : 1. Titik potong sumbu x, Gambarlah graik fungsi kuadrat y = x 2 - 4x - 5. Jawaban : a. Titik potong sumbu x, y = 0. Menentukan fungsi kuadrat yang grafiknya mmotong sumbu x
FungsiKuadrat Fungsi Kuadrat adalah pemetaan dari daerah asal (domain) ∈ 𝑅 ke tepat satu daerah hasil (range) yang dinyatakan dengan rumus: 𝑦 = 𝑓 𝑥 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 dimana a, b, dan c adalah konstanta bilangan riil, 𝑎 ≠ 0. Dengan 𝑓 (𝑥) atau 𝑦 disebut dengan fungsi.
3 Jika D < 0 maka persamaan kuadrat memiliki akar yang imaginer atau tidak memotong sumbu x. karakteristik grafik berdasarkan nilai a, 1) jika a > 0 maka grafik terbuka keatas. 2) jika a < 0 maka grafik terbuka kebawa. 3) jika a = 0 bukan persamaan kuadrat. Pembahasan: grafik fungsi kuadrat y = x² - 4x + 5. kita hitung nilai Determinannya . D
Gambarlahfungsi kuadrat berikut : 1). Y = x 2 – 4x – 21. 2). F(x) = -x 2 – 6x – 8. Gambarlah dengan menggunakan jarak antar skala 1 cm . Selamat mengerjakan!! GRAFIK FUNGSI KUADRAT; FUNGSI KUADRAT 2; MENENTUKAN FUNGSI KUADRAT; TRANSLASI; REFLEKSI (PENCERMINAN) Tuntutlah ilmu sepanjang hayat.
DzjU. Ingat persamaan umum fungsi kuadrat adalah 1. Menentukan titik potong terhadap sumbu . Pertama liat diskriminan dari fungsi kuadrat karena maka fungsi kuadrat diatas tidak memotong sumbu x. 2. Menentukan titik potong terhadap sumbu y. jadi titik potong terhadap sumbu y adalah . 3. Menentukan sumbu simetri 4. Menentukan nilai minimum 5. Menentukan koordinat titik balik Koordinat titik balik Dengan demikian, sketsa grafik fungsi adalah sebagai berikut
Ingat persamaan umum fungsi kuadrat adalah 1. Menentukan titik potong terhadap sumbu . Pertama liat diskriminan dari fungsi kuadrat karena maka fungsi kuadrat diatas tidak memotong sumbu x 2. Menentukan titik potong terhadap sumbu y. jadi titik potong terhadap sumbu y adalah . 3. Menentukan sumbu simetri 4. Menentukan nilai minimum 5. Menentukan koordinat titik balik koordinat titik balik Dengan demikian, sketsa grafik fungsi adalah sebagai berikut
Langkah-langkah menggambar fungsi kuadrat 1 Titik potong dengan sumbu . Titik potong dengan sumbu diperoleh jika . Jadi, titik potong terhadap sumbu adalah dan . 2 Titik potong dengan sumbu Titik potong dengan sumbu diperoleh jika . Jadi, titik potong terhadap sumbu adalah . 3 Persamaan sumbu simetri Persamaan sumbu simetri ditentukan dengan rumus . 4 Nilai optimum Nilai optimum ditentukan dengan mensubstitusi ke dalam persamaan fungsi kuadrat. 5 Titik puncak Titik puncak merupakan titik koordinat dari , sehingga 6 Hubungkan titik-titik pada langkah 1-5, sehingga gambar fungsi kuadratnya adalah Dengan demikian, gambar grafik fungsi kuadrat yang ditentukan oleh fungsi tersebut adalah gambar di atas.
Kelas 9 SMPFUNGSI KUADRATFungsi kuadrat dengan tabel, grafik, dan persamaanFungsi kuadrat dengan tabel, grafik, dan persamaanFUNGSI KUADRATALJABARMatematikaRekomendasi video solusi lainnya0353Diketahui garis dengan persamaan x + 4y + 3 = 0 dan 2x - ...0247Grafik dari y = 4x - x^2 paling tepat digambar sebagai...0404Jika f adalah fungsi kuadrat yang grafiknya melalui titik...0349Grafik fungsi kuadrat yang memotong sumbu X di titik -4,...Teks videodi sini ada pertanyaan yaitu Gambarlah grafik fungsi kuadrat y = min x kuadrat + 2 x + 8 untuk menjawab pertanyaan tersebut maka kita akan mencari dulu titik potong terhadap sumbu x dan sumbu y untuk yang pertama kita akan mencari titik potong terhadap sumbu x nya maka artinya nilainya sama dengan pada fungsi kuadrat tersebut karena isinya adalah 0, maka di sini menjadi 0 = min x kuadrat + 2 x + 8 selanjutnya kita akan mencari titik potong terhadap sumbu x nya dengan cara pemfaktoran faktoran maka di sini kita akan mengubah min x kuadrat supaya menjadi positif sehingga harus dikalikan dengan 1 maka 0 = x kuadrat min 2 x min 8 di mana saat kita faktorkan maka akan menjadi X min 4 dikalikan dengan x2 sehingga nilai x nya sama dengan 4 atau nilai x y = negatif 2 maka titik potong terhadap sumbu x nya adalah 4 koma Min 2,0 selanjutnya kita akan mencari titik potong terhadap sumbu y maka artinya nilai x nya = 0 dimana y = x + 2 x + 8 dengan x maka y = Min 0 kuadrat + 2 x 0 + 8 maka nilainya sama dengan titik potong terhadap sumbu y adalah 0,8 lanjutnya maka di sini kita akan mencari puncak dari grafik tersebut didapatkan dari min b per 2 koma negatif dari diskriminasi itu b kuadrat min 4 x a * c dibagi dengan 4 A maka disini untuk fungsi kuadrat tersebut nilai a-nya adalah min 1adalah 2 dan nilainya adalah 8 sehingga negatif dari B yaitu negatif 2 dibagi dengan 2 kali a nya adalah negatif 1 koma negatif 2 kuadrat adalah 4 dikurangi dengan 4 kali a nya adalah min 1 dikalikan dengan c-nya adalah 8 kemudian dibagi dengan 4 kali a nya adalah min 1 sehingga disini menjadi negatif 2 dibagi dengan negatif 2 koma negatif dari 4 lalu ditambahkan dengan 32 dibagi dengan negatif 4 maka disini menjadi negatif 2 per 2 yaitu 1 kemudian koma negatif negatif maka positif sehingga menjadi 36 dibagi dengan 4 maka titik puncak pada grafik fungsi kuadrat tersebut itu ada1,9 langkah selanjutnya titik-titik tersebut akan kita beri nama yaitu titik a. Titik B titik c dan titik D selanjutnya titik ABC akan kita Gambarkan dalam sebuah diagram kartesius Sehingga ini adalah titik-titiknya maka untuk membentuk suatu grafik kita akan menggabungkan titik-titik tersebut sehingga terbentuklah sebuah grafik parabola yang terbuka ke bawah dengan titik puncaknya adalah 1,9 sampai jumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
PembahasanIngat persamaan umum fungsi kuadrat adalah a x 2 + b x + c = 0 1. Menentukan titik potong terhadap sumbu x . x 2 − 6 x + 8 = 0 x − 4 x − 2 = 0 x = 4 atau x = 2 Maka titik potong di sumbu x adalah 4 , 0 dan 2 , 0 . 2. Menentukan titik potong terhadap sumbu y. f 0 = 0 2 − 6 ⋅ 0 + 8 = 8 Jadi titik potong terhadap sumbu yadalah 8 , 0 . 3. Menentukan sumbu simetri. x = 2 a − b = 2 ⋅ 1 − − 6 = 3 4. Menentukan nilai minimum. y = − 4 a b 2 − 4 ⋅ a ⋅ c = − 4 ⋅ 1 − 6 2 − 4 ⋅ 1 ⋅ 8 = − 1 5. Menentukan koordinat titik balik . Koordinat titik balik adalah 3 , − 1 Dengan demikian,sketsa grafik fungsi adalah sebagai berikutIngat persamaan umum fungsi kuadrat adalah 1. Menentukan titik potong terhadap sumbu . Maka titik potong di sumbu x adalah . 2. Menentukan titik potong terhadap sumbu y. Jadi titik potong terhadap sumbu y adalah . 3. Menentukan sumbu simetri. 4. Menentukan nilai minimum. 5. Menentukan koordinat titik balik . Koordinat titik balik adalah Dengan demikian, sketsa grafik fungsi adalah sebagai berikut
gambarlah grafik fungsi kuadrat berikut